Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye

نویسندگان

  • Yoshikazu Imanishi
  • Matthew L. Batten
  • David W. Piston
  • Wolfgang Baehr
  • Krzysztof Palczewski
چکیده

Visual sensation in vertebrates is triggered when light strikes retinal photoreceptor cells causing photoisomerization of the rhodopsin chromophore 11-cis-retinal to all-trans-retinal. The regeneration of preillumination conditions of the photoreceptor cells requires formation of 11-cis-retinal in the adjacent retinal pigment epithelium (RPE). Using the intrinsic fluorescence of all-trans-retinyl esters, noninvasive two-photon microscopy revealed previously uncharacterized structures (6.9 +/- 1.1 microm in length and 0.8 +/- 0.2 microm in diameter) distinct from other cellular organelles, termed the retinyl ester storage particles (RESTs), or retinosomes. These structures form autonomous all-trans-retinyl ester-rich intracellular compartments distinct from other organelles and colocalize with adipose differentiation-related protein. As demonstrated by in vivo experiments using wild-type mice, the RESTs participate in 11-cis-retinal formation. RESTs accumulate in Rpe65-/- mice incapable of carrying out the enzymatic isomerization, and correspondingly, are absent in the eyes of Lrat-/- mice deficient in retinyl ester synthesis. These results indicate that RESTs located close to the RPE plasma membrane are essential components in 11-cis-retinal production.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinyl ester homeostasis in the adipose differentiation-related protein-deficient retina.

The retinal pigmented epithelium (RPE) plays an essential role in vision, including storing and converting retinyl esters of the visual chromophore, 11-cis-retinal. Retinyl ester storage structures (RESTs), specialized lipid droplets within the RPE, take up retinyl esters synthesized in the endoplasmic reticulum. Here we report studies of mice lacking exons 2 and 3 of the gene encoding adipose ...

متن کامل

Endogenous fluorophores enable two-photon imaging of the primate eye.

PURPOSE Noninvasive two-photon imaging of a living mammalian eye can reveal details of molecular processes in the retina and RPE. Retinyl esters and all-trans-retinal condensation products are two types of retinoid fluorophores present in these tissues. We measured the content of these two types of retinoids in monkey and human eyes to validate the potential of two-photon imaging for monitoring...

متن کامل

Coherent anti-stokes Raman scattering (CARS) microscopy: a novel technique for imaging the retina.

PURPOSE To image the cellular and noncellular structures of the retina in an intact mouse eye without the application of exogenous fluorescent labels using noninvasive, nondestructive techniques. METHODS Freshly enucleated mouse eyes were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). Cross sectional transver...

متن کامل

Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye

PURPOSE Although extrinsic fluorophores can be introduced to label specific cell types in the retina, endogenous fluorophores, such as NAD(P)H, FAD, collagen, and others, are present in all retinal layers. These molecules are a potential source of optical contrast and can enable noninvasive visualization of all cellular layers. We used a two-photon fluorescence adaptive optics scanning light op...

متن کامل

New structure found in plain sight

New structure found in plain sight ike explorers spotting an uncharted island on the horizon, Imanishi et al. (page 373) have identified a previously unknown cellular structure that could be an entirely new organelle. The structure, located in cells of the retinal pigment epithelium, appears to be an essential waypoint in the retinoid cycle—the series of chemical reactions that regenerates 11-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 164  شماره 

صفحات  -

تاریخ انتشار 2004